
Distributed Data Storage for Opportunistic Grids∗

Raphael Y. de Camargo
Dept. of Computer Science

Universidade de São Paulo, Brazil

rcamargo@ime.usp.br

Fabio Kon (advisor)
Dept. of Computer Science

Universidade de São Paulo, Brazil

kon@ime.usp.br

ABSTRACT
Grid applications typically need to deal with large amounts of data.
The traditional approach for data storage is to employ high-perfor-
mance dedicated servers with data replication. However, a class of
computational grids, called opportunistic grids, focus on the usage
of idle resources from shared machines. These machines normally
have large quantities of unused storage space that could be used
when the machines are idle, allowing opportunistic grids to share
not only computational cycles, but also storage space.

In this work, we present the initial design of OppStore, a mid-
dleware that provides reliable storage using the free storage space
from shared grid machines. The storage can be transparently ac-
cessed from any grid machine, allowing easy data sharing among
grid users and applications. The system uses a two-level peer-
to-peer organization to connect grid machines in a scalable and
fault-tolerant way. To deal with resource heterogeneity, we devel-
oped the concept of virtual ids, which allows the creation of virtual
spaces located on top of the peer-to-peer routing substrate. These
virtual spaces enables the middleware to perform heterogeneity-
aware, load-balancing selection of storage sites using multiple si-
multaneous metrics.

Categories and Subject Descriptors
C.2 [Computer-communication Networks]: [Distributed systems]

General Terms
Design, Performance, Reliability

1. INTRODUCTION
In addition to powerful CPUs, applications executing on compu-

tational grids [2,8,11] typically require an infrastructure for manip-
ulating large amounts of data. Stored data may be shared by sev-
eral applications, as output data from an application may be used

∗This work is supported by a grant from CNPq, Brazil, process
#141966/03-3.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDS ’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-418-9/06/11 ...$5.00.

as input for several other applications. Consequently, a grid infras-
tructure needs a reliable, high-capacity storage system that can be
easily accessed from any point in the grid.

Traditionally, data storage in computational grids uses dedicated
storage servers, with data replicated across several servers and man-
aged by replica management systems [3,4,20]. These systems usu-
ally target high-performance computing platforms, with application
that requires very large amounts (terabytes or petabytes) of data and
run on supercomputers connected by specialized high-speed net-
works. But this infrastructure is only available to institutions that
can afford the high costs associated with it.

Opportunistic grids are a class of computational grids focusing
on the usage of idle computing resources [5, 14, 17]. These re-
sources include several types of machines, such as workstations,
PCs, and computing clusters. The motivation for “opportunistic”
is that these machines remain idle for the vast majority of time.
The main shared resources are the idle processor cycles of the ma-
chines. But these shared machines often also have large amounts
of unused storage space in their local disks. Combining the unused
space of a few hundred machines, we can easily achieve several ter-
abytes of storage space. Moreover, using these machines for storing
data would improve resource utilization and minimize the need to
purchase extra hardware to store application data. This enables a
low-cost solution for data storage on institutions that have limited
budget, for example in developing countries.

But using shared machines for data storage is a difficult task.
Machine owners sharing their resources with the grid should have
their Quality of Service (QoS) preserved, implying that machine
resources should only be used during idle periods. Also, shared
machines are frequently turned off, for example at night or dur-
ing weekends. A distributed storage system using these machines
must ensure data availability in this highly dynamic and unstable
environment. Finally, computational grids may encompass tens of
thousands machines, requiring the system to be self-organizing and
highly scalable.

A similar scenario, in which available free space of several desk-
top machines is used to store and distribute content, is explored by
peer-to-peer file systems, such as CFS [6] and PAST [21]. Data
location in these systems is implemented by a distributed hash ta-
ble (DHT). But an important problem with most DHTs is the poor
load balancing guarantees they offer. Issuing randomids to nodes
results in some nodes being responsible forid rangesO(log n)
times larger than other nodes. Moreover, the heterogeneity of nodes
is not considered. To solve these problems, load balancing algo-
rithms for DHTs have been proposed recently [6, 13, 15, 23], with
most of them using the concept of virtual servers. Using virtual
servers, the amount of the id space allocated to each server can be
dynamically moved from one server to another. But this approach

has the drawback of requiring large amounts of maintenance infor-
mation.

In this work, we proposeOppStore, a middleware that explores
the usage of a peer-to-peer overlay network for storage of data in
non-dedicated machines in the context of opportunistic grids. The
middleware organizes the grid machines in a federation of clusters,
organization used by several existing opportunistic grids, such as
Condor-G [12], InteGrade [14], and OurGrid [5]. At the cluster
level, a cluster manager is responsible for several data repositories,
running on the cluster shared machines. At the grid level, clus-
ter managers are connected by a structured peer-to-peer overlay
network, forming a global federation of data storage clusters. To
improve data availability in face of the dynamism of a grid envi-
ronment, OppStore uses an information dispersal algorithm [7, 18]
to code a file into several redundant fragments. The system then
scatters these fragments into several grid clusters chosen randomly.

Peer-to-peer overlay routing is performed using a distributed hash
table (DHT) based on Pastry [22]. To deal with node heterogene-
ity, we introduce the concept ofvirtual ids. Using virtual ids, in
addition to the original node id provided by Pastry, each node re-
ceives an extra virtual id, creating a virtual id space located on top
of the Pastry id space. These virtual ids can change dynamically
as nodes join and leave the system, and when the load on nodes
change. The amount of virtual id space allocated to each node is
determined by the node capacity, allowing dynamic load-balancing
among heterogeneous nodes. In the OppStore scenario, the ob-
jective is to maximize data availability and to place data on nodes
with abundant storage space. Consequently, we define as the capac-
ity of machines the product between its available space and mean
availability1. Although in OppStore we initially use a single vir-
tual space, it is possible to instantiate multiple simultaneous virtual
spaces, allowing load-balancing according to different metrics.

We expect the following contributions from this work:

• Design of OppStore, a distributed storage middleware for op-
portunistic grids that uses non-dedicated machines for the
storage of user and application data in a feasible, scalable,
and fault-tolerant way. The system uses a two-level peer-to-
peer organization to connect grid machines;

• The novel concept of virtual ids, which enables load-balancing
in DHT-based peer-to-peer networks composed of heteroge-
neous nodes. It allows the creation of multiple virtual spaces
located on top of the original DHT id space.

2. RELATED WORK
This work intersects with three research areas, namely grid data

management, distributed storage systems, and load-balancing in
peer-to-peer systems.

2.1 Grid Data Management
FreeLoader [25] aims to use free desktop storage space and I/O

bandwidth to store scientific data. The system divides a file into
several fragments to improve performance. Similarly to our work,
it targets non-dedicated resources for data storage. But it only con-
siders static sets of machines from a single cluster, while we deal
with dynamic sets of machines distributed across several clusters.
Also, Freeloader does not consider load-balancing and machine
availability when choosing storage sites.

1In this work, we define machine availability as the fraction of the
total time in which the machine is available for data download and
upload.

JuxMem [1] implements a data sharing service for grid applica-
tions by joining the concepts of peer-to-peer and distributed shared
memory. As in our work, it organizes grid machines as a federation
of clusters connected by a peer-to-peer model, with a node elected
as cluster manager in each cluster. Differently from our work, the
authors focus on the development of a writable distributed shared
memory for grid applications. This requires maintaining several
full replicas of stored data, which incurs large storage and network
overheads, specially when operating with non-dedicated machines,
where the replication level must be higher. Also, they do not em-
ploys mechanisms for load-balancing and the availability character-
istics of machines is not considered when choosing storage sites.

A common technique for data grids is the usage of data replica-
tion in conjunction with a replica location system [3, 4, 20]. Some
replica management systems [4,20] use compression schemes, such
as Bloom filters, allowing replica managers to have complete knowl-
edge about replica locations on the grid. The search mechanism is
fast and the system has a high degree of fault-tolerance. But due to
global knowledge of replica locations, these systems have limited
scalability, with possibly expensive table updates. Also, the servers
maintaining the replica locations are usually configured statically.

Caiet al. [3] built a replica location system using the Chord [24]
distributed hash table. The objective was to provide self-organi-
zation and improved fault-tolerance and scalability for the replica
location system. The system only deals with replica location, while
OppStore also deals with storage in non-dedicated repositories, in-
cluding the selection of appropriate repositories. Also, the pro-
posed replica location service employ load balancing only for replica
location queries, and considers that all the servers have equal capac-
ities. Our system uses a load-balancing technique that considers the
heterogeneity of shared machines in grid clusters.

2.2 Distributed Peer-to-Peer Storage Systems
PAST [21] is a peer-to-peer, read-only storage system built over

Pastry [22]. The system connects machines through a Pastry DHT,
and uses this infrastructure to route files for storage. The system
stores full files on the machines, using replication to provide fault-
tolerance. OppStore supports both file replication and erasure cod-
ing. More importantly, there is little support for load distribution in
PAST, with support only for storage request forwarding. Also, the
system does not consider machine heterogeneity. In our system, we
use an heterogeneity-aware load-balancing algorithm that operates
directly in the routing algorithm.

The Cooperative File System (CFS) [6] also provides a read-
only peer-to-peer storage system, but uses the Chord [24] DHT al-
gorithm. CFS breaks files into several blocks and stores multiple
replicas of each block. A CFS client is responsible for the conver-
sion from block to file system semantics. CFS uses virtual servers
for load balancing, allowing machines to instantiate a variable num-
ber of virtual servers. The drawback of this approach is that, when
virtual servers are instantiated or relinquished, a large amount of
data copying may be necessary. Also, the usage of virtual servers
requires higher bandwidth overhead to maintain the overlay net-
work. Our storage system prevents both problems by employing
an alternative loading balancing technique based on the concept of
virtual ids and by the usage of a two-level scheme for file storage.

OceanStore [16] creates a global-scale persistent storage for mu-
table data. It uses Plaxton trees and Bloom filters to perform data
location and data can be stored using replication or erasure coding.
To allow data updates in the presence of file replicas, Byzantine
agreements protocols are used. Finally, introspection mechanisms
are employed to cluster related files and for replica management.
All these features of the system come at the cost of high implemen-

tation complexity. Also, the system does not consider node het-
erogeneity and does not employ load-balancing algorithms when
selecting data storage sites.

2.3 Load Balancing in DHTs
Most of the works on load-balancing of DHT tables use the con-

cept of virtual servers [6, 13, 15, 19, 24]. The most common ap-
proach is to let each node to instantiate up toO(log n) virtual
servers, wheren is the number of nodes [6,24]. While straightfor-
ward to implement, this approach has some important drawbacks,
such as the large amount of maintenance information, which occurs
because each node needs to keep information aboutO(log n) vir-
tual servers. Karger and Ruhl [15] proposed a variation of the vir-
tual servers approach by allowing each server to assume the identity
of exactly one oflog n virtual servers. It has the advantage of bal-
ancing the load without the need of tracking many virtual servers,
but has the drawback of providing less control when adjusting load
distribution. An important drawback of using virtual servers is that
the process of destroying and instantiating new virtual servers ev-
ery time that load needs to be reallocated is expensive, as it re-
quires the construction and update of several tables. Also, using
virtual servers, the application is limited to a single routing space2.
In contrast, with the virtual ids we propose, changes in id ranges
are cheaper to implement and multiple simultaneous id spaces can
coexist with a small overhead.

The concept of virtual servers is also applied to dynamic load
balancing, where virtual servers from an overloaded node are trans-
ferred to an underloaded one. These load-balancing schemes nor-
mally use the concept of directories to store load-information [13,
19]. Nodes send periodical updates about their load to one of sev-
eral directories, which control exchanges of virtual servers between
nodes. Using directories incurs the overhead of requiring nodes to
send periodic updates to directories. Using virtual ids, load is ex-
changed directly between neighbors, what is incompatible with the
use of directories. On the other hand, with virtual ids it is possible
to fine tune load exchange between nodes and load can be balanced
according to multiple metrics.

Using a different approach, Karger and Ruhl [15] propose that a
server may exchange part of its id space with its neighbors to per-
form load-balancing. This approach is similar to ours, but in their
work exchanges are performed only between immediate neighbors.
In a recent work, Xu and Bhuyan [26] proposed an algorithm which
uses file access history and node heterogeneity to perform load bal-
ancing. Similarly to our work, a node divides its id space with its
neighbors. But in both works, the node real id is changed instead of
a virtual id. Changing real ids is more costly than changing virtual
ids, since it is usually implemented by a node departure operation
followed by a node joining one. More importantly, their load bal-
ancing scheme permits a single virtual space. In a sense, we could
say that virtual ids could be used to generalize these schemes to
allow other metrics to be used, such as bandwidth and node churn
history.

An important factor to consider is that, depending on the appli-
cation, changes in the id range allocated to a node may require data
transfer between nodes. This typically occurs in data storage ap-
plications, which use the same id to store and to locate a file in
the peer-to-peer network. The analysis of the amount of data copy-
ing is dependent on the application and can involve the replication
strategy used. But, when using virtual ids, the possibility of having
more than one space for message routing provides more flexibility

2Actually, more than one routing space can be obtained by simulta-
neously maintaining multiple overlay networks. But this procedure
would be too expensive.

to the application. For example, OppStore can dynamically balance
the amount of data uploaded to a node without requiring any data
transfer during virtual id range reallocation.

3. MIDDLEWARE DESIGN
We designed a middleware to permit reliable and efficient stor-

age of data using the free storage space from idle machines in op-
portunistic grids organized as a federation of clusters. The middle-
ware uses a peer-to-peer substrate to route data storage and retrieval
requests to the target machines. In the following section, we briefly
describe the OppStore architecture and outline its main protocol.
We then analyze the usage of virtual ids to deal with machine and
cluster heterogeneity.

3.1 Middleware architecture
OppStore is structured as a federation of clusters, with each clus-

ter containing a Cluster Data Repository Manager (CDRM), which
manages several Autonomous Data Repositories (ADR), one on
each cluster node. Consequently, the system can be divided in two-
levels, the grid level and the cluster level. CDRMs form a struc-
tured overlay network, using the Pastry [22] distributed hash table
(DHT) algorithm. We use 160 bit ids to uniquely identify CDRMs
and stored data. Each cluster is responsible for storing data from
a portion of the DHTid space. ADRs are simple data reposito-
ries that accept requests for data storage and retrieval in a single
machine. They use very few system resources, and can be config-
ured by the machine owner, for example, to allow data upload and
download only when the machine is idle or at any time, but limit-
ing the borrowed bandwidth. Figure 1 shows the main OppStore
components.

ADR

ADR

ADR

CDRMADR

ADR

ADR

CDRM

CDRM CDRM

CDRM

ADR

ADR

ADR

ADR

ADR

ADR

ADR

ADR

ADR

Grid
application

broker

OppStore cluster

Pastry ring

Figure 1: OppStore Architecture.

This two-level architectural design facilitates the management
of system dynamism. If the system organized all grid machines
in a single peer-to-peer overlay network, the constant changes in
machine availability, which typically occur in opportunistic envi-
ronments, would have to be treated as node joining and departure
operations, which are expensive operations. When using a two-
level design, this dynamism can be managed in the local cluster, by
the cluster manager.

The federation structure also allows the system to disperse grid
data throughout the Grid. During storage, the system slices the data
into several redundant coded fragments and stores them in different
grid clusters. This distribution improves data availability and fault-
tolerance, since fragments are located in geographically dispersed
clusters. When performing data retrieval, applications can simulta-
neously download file fragments from the closest clusters, enabling
efficient data retrieval.

3.2 Data storage and retrieval
Clients access the distributed storage system through abroker,

which is responsible for contacting other OppStore components to
perform file storage and retrieval operations. Several types of data
can be stored in a grid system, with each type having different re-
quirements. OppStore allows a client application to choose one of
two storage modes: perennial and ephemeral.

The perennial mode is used for data with long lifetimes. The
broker performs file storage in two phases. In the first phase, the
broker breaks the file contents into several redundant fragments us-
ing an information dispersal algorithm [7, 18] and evaluates their
secure hashes. The broker then sends the list of fragment hashes
to the cluster CDRM, which routes messages in the overlay net-
work to other CDRMs using the fragment hashes as message ids,
requesting the addresses of suitable ADRs to store the fragments.
The cluster CDRM then sends the ADR address list back to the
broker, which uploads the fragments directly to the ADRs. In the
second phase, the broker constructs aFile Fragment Index (FFI),
containing the location and the secure hash of each fragment. The
broker then set theFFI id as the secure hash from the fragments
hashes and requests the FFI storage to the cluster CDRM.

Retrieving a file is similar. The broker retrieves the FFI of the file
and downloads its fragments directly from the ADRs. The broker
then checks the fragments integrity and reconstruct the file. Conse-
quently, we can say that data stored in OppStore is self-verifying.

We should emphasize that file contents are not routed through the
overlay network, only the fragment ids and the FFI. File contents
are transferred directly from the broker to the ADRs and vice versa.
This is important because individual files may have sizes of several
gigabytes. If they had to be routed through several hops in the
overlay network, this would overload the CDRMs.

Also, placing fragment storage locations in the FFI provides an
important advantage: the fragment locations are not tied to the clus-
ter responsible for their ids. In other words, when the id range for
which a CDRM is responsible changes, there is no need to move
the fragments between clusters. The FFIs are still retrieved using
their ids and, consequently, would need to be moved, but their size
is small compared to file contents. And as we will see in Section 4,
in some cases even the FFIs will not need to be moved.

The ephemeral mode is used for data that requires high band-
width and only needs to be available for a few minutes. This class
of storage would be used to store checkpointing [9, 10] data and
temporary application data. An example of temporary data oc-
curs in workflow applications, where data output by one applica-
tion stage is used by a later application stage running in the same
cluster. In this storage mode, the system stores the data only in the
local cluster and uses data replication to provide fault-tolerance.

4. VIRTUAL IDS
OppStore determines the storage location of fragments by rout-

ing the fragment identifier to the CDRM responsible for that iden-
tifier. But this scheme does not take cluster heterogeneity into con-
sideration. To allow OppStore to consider this heterogeneity when
selecting storage sites, we included the concept ofvirtual ids in our
routing algorithms. In addition to its original id, each node (CDRM
in OppStore) can receive additional virtual ids. Each virtual id is
associated to an extra virtual id space located on top of the original
id space of the DHT. This virtual space is much cheaper to maintain
than the original one and virtual ids can be changed with little over-
head. The low maintenance cost allows simultaneous operation of
multiple virtual spaces.

In this section, we outline how we extended the Pastry [22] al-

gorithm to include virtual ids. Although we use Pastry as example,
the virtual ids concept can also be implemented in other peer-to-
peer substrates. In the following section we provide a very brief
overview of Pastry3 and then describe the main virtual id protocols
for a single virtual space. The extension to multiple virtual spaces
is straightforward, only requiring the execution of the same proto-
cols on the other virtual spaces.

4.1 Pastry overview
Pastry provides a peer-to-peer routing substrate that implements

a distributed hash table. Each Pastry node receives a random node
id from the id space. A message routed through Pastry is guaran-
teed to reach the node with the closest id to the message id. To
perform routing, ids in Pastry are converted to a number in base2d,
whered is a Pastry parameter. At each step, a message is routed to
a node whose id is numerically closer to message id. Pastry nodes
maintain aleafset table, containing the node ids of thel numerically
closer nodes. Before forwarding a message, a Pastry node checks
whether the target node is in its leafset and, if positive, delivers the
message to that node.

4.2 Virtual ids overview
When using virtual ids, nodes are organized in a virtual id space

over the underlying peer-to-peer routing infrastructure. In this space,
the virtual ids can be changed to reflect the heterogeneity of nodes
and to adapt to dynamic environments where nodes constantly leave
and join the network or change their characteristics. Each node in
the virtual space receives responsibility for a virtual id range pro-
portional to its capacity. This capacity can be a function of one
or more metrics, such as node availability, storage capacity, band-
width, and processing power.

When a node connects to the network, the Pastry joining protocol
is executed, with the joining node receiving a random Pastryid.
The joining node then starts thevirtual space partition protocol,
contacting the nodes from its Pastry leafset to obtain their virtual
ids and capacities. Based on this information, the joining node
partitions the virtual id space range covered by these nodes, giving
to each neighbor a range proportional to its capacity. The joining
node then sends the new virtual ids to these nodes.

The virtual space partition protocol is also executed when a node
leaves the network or changes its capacity. It guarantees that the
virtual id space from a subset of the nodes will always be parti-
tioned according to their capacities. Using this protocol the system
can easily adapt to highly dynamic environments.

Each node maintains a table calledvirtual neighborset contain-
ing the virtuals ids of its neighbors. The table is populated with in-
formation obtained during the virtual space partition protocol and
is later used to improve the robustness of the virtual ids routing
protocol described in the next section.

4.3 Routing in virtual spaces
To allow routing in the virtual id space, each node maintains an

additional table, calledvirtual leafset. This table contains a list of
successive nodes from the virtual id space, centered in the node
original id. The virtual leafset maps the original id space covered
by the Pastry leafset of a node into the virtual id space and allows
the transition from the original id space to the virtual space. Fig-
ure 2 shows the relation between the original and virtual id spaces,
the Pastry leafset, the virtual leafset, and the virtual neighborset.

The virtual routing algorithm allows routing a message from any
node S to the node T responsible for themessage id in the virtual
id space. The idea is that since the virtual and original id spaces
3For more details of Pastry, refer to the original paper [22].

Figure 2: Virtual id space.

are superposed, all the routing can be performed in the original id
space using the Pastry algorithm. The transition to the virtual space
occurs when the message reaches a node whose virtual leafset con-
tains the node responsible for the message id in the virtual id space.
This transition is guaranteed to occur as long as the virtual leafset
of a node covers at least the same id range as its pastry leafset.

The important consequence of using the underlying routing in-
frastructure to perform routing in a virtual space is that its main-
tenance is very cheap. The underlying overlay keeps all the costs
of maintaining the network integrity and keeping the routing tables
updated. This allows the simultaneous creation of several virtual
spaces with low overhead. Moreover, the original id space is main-
tained and can also be used for message routing.

The virtual leafset needs to be updated when virtual ids of its
members change. When a node finishes a virtual space partition
protocol, it sends a message to the nodes with references to the
changed virtual ids with the new values.

We emphasize that the virtual leafset and neighborset have a
mean size similar to the Pastry leafset. Also their maintenance is
very cheap, since they only need to be updated when some virtual id
changes. Even in this case, the number of nodes contacted is also
constant, and is typically in the order of 4 times the leafset size.
Consequently, in contrast to using virtual servers, that requires a
large increase in the overlay maintenance costs, using virtual ids
we can augment a peer-to-peer substrate to deal with heterogeneity
using very few extra resources.

4.4 Using virtual ids in OppStore
In OppStore, we define the capacity of each machine as the prod-

uct of its mean availability and free storage space, and use as cluster
capacity the sum of the capacities of all cluster machines. OppStore
creates a single virtual id space, using the cluster capacities to de-
fine the CDRMs virtual ids. This virtual space is used for routing
when selecting the cluster that will host a file fragment. The ob-
jective is to store fragments in clusters containing machines with
higher availability and free storage space.

Routing and selection of CDRMs responsible for FFI ids is per-
formed in thePastry id space. Pastry ids are independent from the
virtual ids and, consequently, CDRMs can change their virtual ids
without requiring the migration of FFIs. This migration will only
be necessary when CDRMs join or leave the Grid, which should
be infrequent. Moreover, since fragment locations are stored in the
FFIs, the fragment contents also do not need to migrate due to vir-
tual and pastry id changes. Actually, tranfers of fragment contents

is only necessary when a significant part of fragments from a file
are lost due to ADR departures. In this case, the lost fragments
are reconstructed. Consequently, using virtual ids, OppStore can
adaptat to dynamic conditions with very low overhead.

5. RESEARCH METHODOLOGY
We will validate OppStore using two methodologies: simula-

tions and experiments in a controlled real grid environment. The
objective of the simulations is to determine how data is distributed
in a grid composed of heterogeneous clusters. For example, we
want to determine in how much the file retrieval success rate is im-
proved when we use capacities based on the machine availability.
In another simulation we intend to utilize a network topology sim-
ulator to evaluate the geographical distribution of stored fragments
and determine good caching policies. Finally, we are using simula-
tions to analyze the virtual ids protocols, for example to determine
the amount of data traffic generated by the protocols.

To perform experiments in a real grid environment, we are in-
tegrating OppStore with the InteGrade opportunistic grid middle-
ware [14]. The experiments will focus on performance, including
data transfer and coding overhead, data storage and retrieval la-
tency, and the effect of data caching. For the experiments, we will
instantiate a few grid clusters in geographically different sites, such
as different Brazilian cities and Spain.

We already implemented a prototype of the system and performed
some simulations to evaluate OppStore. In one of the experiments,
we simulated a grid of 100 clusters, each containing from 10 to
200 machines and machines mean idle times ranging from 30% to
70% of the time. We stored in this grid, 10k files, broken in 24
coded fragments, from which 12 are sufficient to reconstruct the
file. When trying to retrieve 12 out of the 24 stored fragments,
we achieved success rates of 94.8% with virtual ids and 86.3%
whithout virtual ids. Consequently, using virtual ids effectively im-
proved the file retrieval success rate.

We could not present other results and the detailed simulation
setup here due to lack of space. We are currently preparing a paper
with OppStore implementation details and experimental and simu-
lation results for the CCGrid conference.

6. CONCLUSIONS AND FUTURE WORK
We designed OppStore to provide an infrastructure for reliable

storage of files in opportunistic grids composed of shared machines,
enhancing these systems by making available large amounts of free
storage space. The middleware is designed to be self-organizing
and fault-tolerant, allowing its operation in dynamic grid environ-
ments without the need for manual configuration. The use of virtual
ids allows the system to automatically select clusters with larger
amounts of storage space and higher machine availabilities for stor-
ing files. This should result in better usage of available storage
space and improved file retrieval success rates. Also, by simultane-
ously using two id spaces, we removed the need for data movement
when clusters changes their capacities.

We already have implemented prototype of OppStore, which we
used to perform some simulations. We are now finishing a complete
implementation of OppStore and its deployment over the InteGrade
grid middleware. During the implementation, we had to deal with
several design and implementation issues, such as data caching, se-
curity, and grid interfaces that we could not discuss in this paper
due to lack of space. We are also evaluating other kinds of met-
rics that could be used to determine storage sites, such as network
bandwidth and geographical proximity.

The next step will be to apply the concept of virtual ids for other

classes of applications. Although we are using OppStore as our ini-
tial evaluation platform, virtual ids could also be used outside the
context of computational grids, for example in distributed peer-to-
peer file systems and application-level multicast. We believe these
applications will benefit from the cheap reconfigurations in the al-
located id ranges for each node and the usage of multiple simulta-
neous virtual spaces.

7. REFERENCES
[1] G. Antoniu, L. Boug, and M. Jan. Juxmem: Weaving

together the p2p and dsm paradigms to enable a grid
data-sharing service.Kluwer Journal of Supercomputing,
2005. To appear. Preliminary electronic version available as
INRIA Research Report RR-5082.

[2] F. Berman, G. Fox, and T. Hey.Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons, 2003.

[3] M. Cai, A. Chervenak, and M. Frank. A peer-to-peer replica
location service based on a distributed hash table. InSC ’04:
Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 56, Washington, DC, USA, 2004.
IEEE Computer Society.

[4] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman,
and R. Schwartzkopf. Performance and scalability of a
replica location service. InHPDC ’04: Proceedings of the
13th IEEE Int. Symp. on High Performance Distributed
Computing, pages 182–191, Washington, DC, USA, 2004.
IEEE Computer Society.

[5] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade,
R. Novaes, and M. Mowbray. Labs of the world, unite!!!
Journal of Grid Computing, 2006. Accepted for publication.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with cfs. InSOSP
’01: Proceedings of the eighteenth ACM symposium on
Operating systems principles, pages 202–215, New York,
NY, USA, 2001. ACM Press.

[7] R. Y. de Camargo, R. Cerqueira, and F. Kon. Strategies for
checkpoint storage on opportunistic grids.IEEE Distributed
Systems Online, September 2006.

[8] R. Y. de Camargo, A. Goldchleger, M. Carneiro, and F. Kon.
The Grid architectural pattern: Leveraging distributed
processing capabilities. InPattern Languages of Program
Design 5. Addison-Wesley, 2006.

[9] R. Y. de Camargo, A. Goldchleger, F. Kon, and A. Goldman.
Checkpointing BSP parallel applications on the InteGrade
Grid middleware.Concurrency and Comp.: Practice and
Experience, 18(6):567–79, May 2006.

[10] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing
systems.ACM Computing Surveys, 34(3):375–408, May
2002.

[11] I. Foster and C. Kesselman.Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[12] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke.
Condor-g: A computation management agent for
multi-institutional grids.Cluster Computing, 5(3), 2002.

[13] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in dynamic structured P2P systems.
In INFOCOM 2004: Proceedings of the 23th Annual Joint
Conference of the IEEE Computer and Communications
Societies, pages 2253–2262, Hong Kong, March 2004. IEEE
Computer Society.

[14] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C.
Bezerra. InteGrade: Object-oriented grid middleware
leveraging idle computing power of desktop machines.
Concurrency and Computation: Practice and Experience,
16:449–459, March 2004.

[15] D. R. Karger and M. Ruhl. Simple efficient load balancing
algorithms for peer-to-peer systems. InSPAA ’04:
Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 36–43,
New York, NY, USA, 2004. ACM Press.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
and B. Zhao. Oceanstore: an architecture for global-scale
persistent storage. InASPLOS-IX: Proceedings of the ninth
international conference on Architectural support for
programming languages and operating systems, pages
190–201, New York, NY, USA, 2000. ACM Press.

[17] M. Litzkow, M. Livny, and M. Mutka. Condor - A hunter of
idle workstations. InICDCS ’88: Proceedings of the 8th Int.
Conference of Distributed Computing Systems, pages
104–111, June 1988.

[18] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance.Journal of the ACM,
36(2):335–348, 1989.

[19] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in structured p2p systems. In
IPTPS 2003: Proceedings of the Second International
Workshop Peer-to-Peer Systems. LNCS (Vol. 2735), pages
68–79. Springer, October 2003.

[20] M. Ripeanu and I. Foster. A decentralized, adaptive replica
location mechanism. InHPDC ’02: Proceedings of the 11 th
IEEE International Symposium on High Performance
Distributed Computing, Washington, DC, USA, 2002. IEEE
Computer Society.

[21] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In SOSP ’01: Proceedings of the eighteenth ACM
Symposium on Operating Systems Principles, pages
188–201, New York, NY, USA, 2001.

[22] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems. InMiddleware 2001: IFIP/ACM
International Conference on Distributed Systems Platforms,
pages 329–350, Heidelberg, Germany, 2001.

[23] H. Shen and C.-Z. Xu. Hash-based proximity clustering for
load balancing in heterogeneous DHT networks. InIPDPS
’06: Proceedings of the 20th IEEE Int. Parallel and
Distributed Processing Symposium, April 2006.

[24] I. Stoica, R. Morris, D. Karger, M. Kaashock, and
H. Balakrishman. Chord: A scalable peer-to-peer lookup
protocol for internet applications.IEEE/ACM Transactions
on Networking, 11(1):17–32, 2003.

[25] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland,
N. Tammineedi, and S. L. Scott. Freeloader: Scavenging
desktop storage resources for scientific data. InSC ’05:
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 56. IEEE Computer Society, 2005.

[26] Z. Xu and L. Bhuyan. Effective load balancing in p2p
systems. InCCGRID ’06: Proceedings of the Sixth IEEE Int.
Symp. on Cluster Computing and the Grid, 2006.

